Abstract

The disparate evolution of sibling planets Earth and Venus has left them markedly different. Venus’ hot (460°C) surface is dry and has a hypsometry with a very low standard deviation, whereas Earth’s average temperature is 4°C and the surface is wet and has a pronounced bimodal hypsometry. Counterintuitively, despite the hot Venusian climate, the rate of intraplate volcano formation is an order of magnitude lower than that of Earth. Here we compile and analyse rock deformation and atmospheric argon isotope data to offer an explanation for the relative contrast in volcanic flux between Earth and Venus. By collating high-temperature, high-pressure rock deformation data for basalt, we provide a failure mechanism map to assess the depth of the brittle–ductile transition (BDT). These data suggest that the Venusian BDT likely exists between 2 and 12km depth (for a range of thermal gradients), in stark contrast to the BDT for Earth, which we find to be at a depth of ∼25–27km using the same method. The implications for planetary evolution are twofold. First, downflexing and sagging will result in the sinking of high-relief structures, due to the low flexural rigidity of the predominantly ductile Venusian crust, offering an explanation for the curious coronae features on the Venusian surface. Second, magma delivery to the surface—the most efficient mechanism for which is flow along fractures (dykes; i.e., brittle deformation)—will be inhibited on Venus. Instead, we infer that magmas must stall and pond in the ductile Venusian crust. If true, a greater proportion of magmatism on Venus should result in intrusion rather than extrusion, relative to Earth. This predicted lower volcanic flux on Venus, relative to Earth, is supported by atmospheric argon isotope data: we argue here that the anomalously unradiogenic present-day atmospheric 40Ar/36Ar ratio for Venus (compared with Earth) must reflect major differences in 40Ar degassing, primarily driven by volcanism. Indeed, these argon data suggest that the volcanic flux on Venus has been three times lower than that on Earth over its 4.56billion year history. We conclude that Venus’ hot climate inhibits volcanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.