Abstract
In a hot carrier solar cell, the steady-state carrier population is hot relative to the surrounding lattice. This requires an absorber material which restricts carrier-phonon interaction and, therefore, reduces entropic loss during thermalization. The limiting efficiency of these devices approaches 85%: the Carnot limit for a solar energy collector. A spectroscopic analysis of GaAsP/InGaAs quantum well structures shows that carrier cooling in single quantum well samples is dominated by the rate of radiative recombination, leading to unprecedented carrier cooling lifetime (τ = 5.8 ±0.1 ns). This exceptional lifetime arises due to state saturation, frustrating the carrier scattering processes. A steady-state carrier population temperature >100 K above the lattice temperature is measured under illumination equivalent to 10 000 Suns. We calculate the projected efficiency >40% for a device with these characteristics, amounting to a 3% efficiency enhancement over equivalent single-junction devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.