Abstract

The Hot Carrier solar cell is a Third Generation device that aims to tackle the carrier thermalisation loss after absorption of above band-gap photons. It is theoretically capable of efficiencies very close to the maximum thermodynamic limit. It relies on slowing the rate of carrier cooling in the absorber from ps to ns. This challenge can be addressed through nanostructures and modulation of phonon dispersions. The mechanisms of carrier cooling are discussed and methods to interrupt this process investigated to give a list of properties required of an absorber material. Quantum well or nano-well structures and large mass difference compounds with phonon band gaps are discussed in the context of enhancing phonon bottleneck and hence slowing carrier cooling. Materials for these structures are discussed and potential combined structures to maximize phonon bottleneck and slow carrier cooling are suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.