Abstract
Results of recent laboratory 'simulations' of photochemical processes on Jupiter are combined with available data on mixing rates and exposure times in the Jovian atmosphere to give quantitative predictions of the rate at which hot-atom reactions produce organic molecules. It is shown that abstraction reactions on methane by hot H atoms from solar UV photolysis of H2S will produce no more than 4 times 10 to the -17th power g/sq cm/sec for a steady-state mole fraction of total organics of approximately 10 to the -16th power. This is roughly 10 to the 7th power times less than the limit of detection of the most sensitive gas analysis experiments ever flown on a spacecraft. By far the most common organic molecule produced by this mechanism is CH3SH, methyl mercaptan, which is produced at a rate at least 600 times smaller than the rate of production of ethane by direct photolysis of CH4 at high altitudes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.