Abstract

Computational fluid dynamics (CFD) simulations model blood flow in aortic pathologies. The aim of our study was to understand the local hemodynamic environment at the site of rupture in distal stent graft-induced new entry (dSINE) after frozen elephant trunk with a clinically time efficient steady-flow simulation versus transient simulations. Steady-state simulations were performed for dSINE, prior and after its development and prior to aortic rupture. To account for potential turbulences due geometric changes at the dSINE location, Reynolds-averaged Navier-Stokes equations with the realizable k-ε model for turbulences were applied. Transient simulations were performed for comparison. Hemodynamic parameters were assessed at various locations of the aorta. Post-dSINE, jet-like flow due to luminal narrowing was observed which increased prior to rupture and resulted in focal neighbored regions of high and low wall shear stress (WSS). Prior to rupture, aortic diameter at the rupture site increased lowering WSS at the entire aortic circumference. Concurrently, WSS and turbulence increased locally above the entry tear at the inner aortic curvature. Turbulent kinetic energy and WSS elevation in the downstream aorta demonstrated enhanced stress on the native aorta. Results of steady-state simulations were in good qualitative agreement with transient simulations. Steady-flow CFD simulations feasible at clinical time scales prior to aortic rupture reveal a hostile hemodynamic environment at the dSINE rupture site in agreement with lengthy transient simulations. Consequently, our developed approach may be of value in treatment planning where a fast assessment of the local hemodynamic environment is essential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.