Abstract

BackgroundDifferent mosquito-borne pathogens are circulating in Iran including Sindbis virus, West Nile virus, filarioid worms and malaria parasites. However, the local transmission cycles of these pathogenic agents are poorly understood, especially because ecological data on vector species are scarce and there is limited knowledge about the host range; this understanding could help to direct species-specific vector control measurements or to prioritize research.MethodsIn the summers of 2015 and 2016, blood-fed mosquitoes were collected at 13 trapping sites on the coast of the Caspian Sea in northern Iran and at an additional trapping site in western Iran. Mosquitoes were generally collected with either a Biogents Sentinel trap or a Heavy Duty Encephalitis Vector Survey trap installed outside. A handheld aspirator was used at the trapping site in western Iran, in addition to a few samplings around the other trapping sites. On average, eight trapping periods were conducted per trapping site. The sources of blood meals were identified using a DNA barcoding approach targeting the cytochrome b or 16S rRNA gene fragment.ResultsThe source of blood meals for 580 blood-fed mosquito specimens of 20 different taxa were determined, resulting in the identification of 13 different host species (9 mammals including humans, 3 birds and 1 reptile), whereby no mixed blood meals were detected. Five mosquito species represented more than 85.8% of all collected blood-fed specimens: Culex pipiens pipiens form pipiens (305 specimens, 55.7% of all mosquito specimens), Cx. theileri (60, 10.9%), Cx. sitiens (51, 9.3%), Cx. perexiguus (29, 5.3%) and Anopheles superpictus (25, 4.6%). The most commonly detected hosts of the four most abundant mosquito species were humans (Homo sapiens; 224 mosquito specimens, 40.9% of all mosquito specimens), cattle (Bos taurus; 171, 31.2%) and ducks (Anas spp.; 75, 13.7%). These four mosquito species had similar host-feeding patterns. The only exceptions were a relatively high proportion of birds for Cx. pipiens pipiens f. pipiens (23.2% of detected blood meal sources) and a high proportion of non-human mammals for Cx. theileri (73.4%). Trapping month, surrounding area, or trapping method had no statistically significant impact on the observed host-feeding patterns of Cx. pipiens pipiens f. pipiens.ConclusionsDue to the diverse and overlapping host-feeding patterns, several mosquito species must be considered as potential enzootic and bridge vectors for diverse mosquito-borne pathogens in Iran. Most species can potentially transmit pathogens between mammals as well as between mammals and birds, which might be the result of a similar host selection or a high dependence on the host availability.

Highlights

  • Different mosquito-borne pathogens are circulating in Iran including Sindbis virus, West Nile virus, filarioid worms and malaria parasites

  • Different mosquito-borne pathogens are circulating in Iran, including Sindbis virus (SINV) [1], West Nile virus (WNV) [2] and filarioid worms [3]

  • This study indicated an impact of the trapping method on the identified host-feeding patterns, e.g. human blood sources were more frequently caught with Biogents Sentinel traps (BG trap) compared with the aspirator for Cx. pipiens pipiens f. pipiens and Cx. perexiguus

Read more

Summary

Introduction

Different mosquito-borne pathogens are circulating in Iran including Sindbis virus, West Nile virus, filarioid worms and malaria parasites. Different mosquito-borne pathogens are circulating in Iran, including Sindbis virus (SINV) [1], West Nile virus (WNV) [2] and filarioid worms [3]. Information on the hosts of mosquitoes is necessary to identify potential vector species under field conditions [6, 7], so that species-specific control measurements can be directed [8]. There are essentially three types of study method to identify the blood meal source of wild mosquitoes: direct observation of the blood foraging on the host, host-baited traps, and the analysis of the blood content in the mosquito gut [9]. Cloning of the PCR amplicons might even allow the detection of mixed blood meals

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call