Abstract
Gene flow maintains the genetic integrity of species over large spatial scales, and dispersal maintains gene flow among separate populations. However, body size is a strong correlate of dispersal ability, with small-bodied organisms being poor dispersers. For parasites, small size may be compensated by using their hosts for indirect dispersal. In trematodes, some species use only aquatic hosts to complete their life cycle, whereas others use birds or mammals as final hosts, allowing dispersal among separate aquatic habitats. We performed the first test of the universality of the type of life cycle as a driver of parasite dispersal, using a meta-analysis of 16 studies of population genetic structure in 16 trematode species. After accounting for the geographic scale of a study, the number of populations sampled, and the genetic marker used, we found the type of life cycle to be the best predictor of genetic structure (Fst): trematode species bound to complete their life cycle within water showed significantly more pronounced genetic structuring than those leaving water through a bird or mammal host. This finding highlights the dependence of parasites on host traits for their dispersal, suggesting that genetic differentiation of parasites reflects the mobility of their hosts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.