Abstract
Animal-bacterial symbioses are highly dynamic in terms of multipartite interactions, both between the host and its symbionts as well as between the different bacteria constituting the symbiotic community. These interactions will be reflected by the titres of the individual bacterial taxa, for example via host regulation of bacterial loads or competition for resources between symbionts. Moreover, different host tissues represent heterogeneous microhabitats for bacteria, meaning that host-associated bacteria might establish tissue-specific bacterial communities. Wolbachia are widespread endosymbiotic bacteria, infecting a large number of arthropods and filarial nematodes. However, relatively little is known regarding direct interactions between Wolbachia and other bacteria. This study represents the first quantitative investigation of tissue-specific Wolbachia-microbiota interactions in the terrestrial isopod Armadillidium vulgare. To this end, we obtained a more complete picture of the Wolbachia distribution patterns across all major host tissues, integrating all three feminizing Wolbachia strains (wVulM, wVulC, wVulP) identified to date in this host. Interestingly, the different Wolbachia strains exhibited strain-specific tissue distribution patterns, with wVulM reaching lower titres in most tissues. These patterns were consistent across different host genetic backgrounds and might reflect different co-evolutionary histories between the Wolbachia strains and A. vulgare. Moreover, Wolbachia-infected females carried higher total bacterial loads in several, but not all, tissues, irrespective of the Wolbachia strain. Taken together, this quantitative approach indicates that Wolbachia is part of a potentially more diverse bacterial community, as exemplified by the presence of highly abundant bacterial taxa in the midgut caeca of several A. vulgare populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.