Abstract

Fungal spores, on contact with their hosts, perceive the plant signals and consequently initiate gene expression that enables the fungus to penetrate through the host barriers. Germination and appressorium formation by Colletotrichum gloeosporioides spore is induced by host surface wax on the growing avocado (Persea americana) fruits and, at ripening of the fruit, ethylene induces multiple appressorium formation. Both the wax and ethylene may use phosphorylation of 29- and 43-kDa proteins in the signal transduction. Unique genes that are expressed during appressorium formation induced by the host signal were cloned and sequenced. These include cap3 and cap5 that encode cysteine-rich small proteins, cap22 that encodes a secreted glycoprotein found in the appressorial wall, and cap20 whose disruption drastically decreases virulence. Disruption of cutinase gene drastically reduces the virulence of Fusarium solani pisi on pea (Pisum sativum L.). The promoter elements in cutinase gene involved in the induction of this gene by the hydroxy fatty acid monomers of cutin were identified and transcription factors that bind these elements were cloned. One of them, that binds to a palindrome, essential for cutinase induction, was found to be phosphorylated. Several proteins kinases from F. solani pisi were cloned. Key words: appressorium, cutin, cutinase, ethylene, gene disruption, protein phosphorylation, protein kinase, transcription factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call