Abstract

Pneumonia occurs in approximately 7% of hospitalized patients. Susceptibility to certain bacteria such as Pseudomonas aeruginosa increases in critically ill patients, particularly those requiring mechanical ventilation. Previous studies investigating this susceptibility have used injurious modes of ventilation. The objective of this study was to evaluate the host's response to intratracheal instillation of P. aeruginosa in the setting of noninjurious mechanical ventilation and compare this with normal, spontaneously breathing animals receiving bacteria. Randomized, controlled in vivo animal study. Research laboratory at a university-affiliated institution. Adult male Sprague-Dawley rats. Rats were randomized into four groups: spontaneously breathing given saline, spontaneously breathing given bacteria, mechanically ventilated given saline, and mechanically ventilated given bacteria. The ventilation strategy used involved low stretch (tidal volume of 8 mL/kg) with a positive end-expiratory pressure of 5 cm H2O. Lung compliance, bacterial recovery, surfactant, total cells, and cytokine concentrations in the lung lavage were analyzed after 4 hrs. Results showed that neither ventilation nor bacteria alone altered lung function, although the combination of ventilation and Pseudomonas significantly decreased arterial oxygenation and lung compliance. Increases in lavage cell counts, cytokines, and surfactant were observed in both groups administered bacteria compared with animals given saline. However, there were no significant differences in bacterial recovery, cell counts, cytokines, and surfactant measurements in the groups given bacteria. These data suggest that bacterial instillation with low-stretch ventilation had a significant effect on lung function but did not alter the inflammatory response to a bacterial challenge over this time course compared with spontaneously breathing animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.