Abstract
Host-virus interactions can significantly impact the viral life cycle and pathogenesis; however, our understanding of the specific host factors involved in highly pathogenic avian influenza A virus H7N9 (HPAI H7N9) infection is currently restricted. Herein, we designed and synthesized 65 small interfering RNAs targeting host genes potentially associated with various aspects of RNA virus life cycles. Afterward, HPAI H7N9 viruses were isolated and RNA interference was used to screen for host factors likely to be involved in the life cycle of HPAI H7N9. Moreover, the research entailed assessing the associations between host proteins and HPAI H7N9 proteins. Twelve key host proteins were identified: Annexin A (ANXA)2, ANXA5, adaptor related protein complex 2 subunit sigma 1 (AP2S1), adaptor related protein complex 3 subunit sigma 1 (AP3S1), ATP synthase F1 subunit alpha (ATP5A1), COPI coat complex subunit alpha (COP)A, COPG1, heat shock protein family A (Hsp70) member 1A (HSPA)1A, HSPA8, heat shock protein 90 alpha family class A member 1 (HSP90AA1), RAB11B, and RAB18. Co-immunoprecipitation revealed intricate interactions between viral proteins (hemagglutinin, matrix 1 protein, neuraminidase, nucleoprotein, polymerase basic 1, and polymerase basic 2) and these host proteins, presumably playing a crucial role in modulating the life cycle of HPAI H7N9. Notably, ANXA5, AP2S1, AP3S1, ATP5A1, HSP90A1, and RAB18, were identified as novel interactors with HPAI H7N9 proteins rather than other influenza A viruses (IAVs). These findings underscore the significance of host-viral protein interactions in shaping the dynamics of HPAI H7N9 infection, while highlighting subtle variations compared with other IAVs. Deeper understanding of these interactions holds promise to advance disease treatment and prevention strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.