Abstract

Arbuscular mycorrhizae affect grassland plant community composition and host plant nutrient uptake, and can mediate shifts in competitive outcome between plant species. Centaurea maculosa, an invasive forb from Eurasia, dominates more than 4 million hectares in the Rocky Mountain region of North America. We examined the role of AM for phosphorus (P) acquisition from a distant source for C. maculosa and Festuca idahoensis, a native bunchgrass. Plants were grown individually in pots divided by a barrier that either excluded plant roots and AM hyphae, or only plant roots. In the half of the pot without a plant, 1 of 3 P treatments was applied: no P, phosphate rock (PR) or triple superphosphate (TSP), applied at a rate of 144 mg P kg−1 soil. After 14 weeks of growth, C. maculosa was twice as large as F. idahoensis, and neither species’ biomass was affected by barrier type. Phosphorus fertilizer, and especially PR, moved across the barrier to the plant side of the pot. Tissue P concentration for C. maculosa was highest with the PR treatment, and was not affected by the barrier type. In contrast, F. idahoensis tissue P concentration did not vary with barrier or P treatments. There was more AM extra radical hyphae (ERH) associated with C. maculosa than F. idahoensis, suggesting that C. maculosa provides more carbon for the AM fungi, resulting in greater ERH production, ERH soil exploration and potential for soil nutrient pool exploitation. Although not tested in this study, differences between host plants may be the result of different physiological characteristics of the host plant or differences in AM fungal species that colonize the invader, with different fungal species accessing P from different distances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call