Abstract

AbstractPrevious host-parasite coevolutionary theory has focused on understanding the determinants of local adaptation using spatially discrete models. However, these studies fall short of describing patterns of host-parasite local adaptation across spatial scales. In contrast, empirical work demonstrates that patterns of adaptation depend on the scale at which they are measured. Here, we propose a mathematical model of host-parasite coevolution in continuous space that naturally leads to a scale-dependent definition of local adaptation. In agreement with empirical research, we find that patterns of adaptation vary across spatial scales. In some cases, not only the magnitude of local adaptation but also the identity of the locally adapted species will depend on the spatial scale at which measurements are taken. Building on our results, we suggest a way to consistently measure parasite local adaptation when continuous space is the driver of cross-scale variation. We also describe a way to test whether continuous space is driving cross-scale variation. Taken together, our results provide a new perspective that can be used to understand empirical observations previously unexplained by theoretical expectations and deepens our understanding of the mechanics of host-parasite local adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.