Abstract

Alphaviruses require conserved cysteine residues for proper folding and assembly of the E1 and E2 envelope glycoproteins, and likely depend on host protein disulfide isomerase-family enzymes (PDI) to aid in facilitating disulfide bond formation and isomerization in these proteins. Here, we show that in human HEK293 cells, commercially available inhibitors of PDI or modulators thereof (thioredoxin reductase, TRX-R; endoplasmic reticulum oxidoreductin-1, ERO-1) inhibit the replication of CHIKV chikungunya virus (CHIKV) in vitro in a dose-dependent manner. Further, the TRX-R inhibitor auranofin inhibited Venezuelan equine encephalitis virus and the flavivirus Zika virus replication in vitro, while PDI inhibitor 16F16 reduced replication but demonstrated notable toxicity. 16F16 significantly altered the viral genome: plaque-forming unit (PFU) ratio of CHIKV in vitro without affecting relative intracellular viral RNA quantities and inhibited CHIKV E1-induced cell-cell fusion, suggesting that PDI inhibitors alter progeny virion infectivity through altered envelope function. Auranofin also increased the extracellular genome:PFU ratio but decreased the amount of intracellular CHIKV RNA, suggesting an alternative mechanism of action. Finally, auranofin reduced footpad swelling and viremia in the C57BL/6 murine model of CHIKV infection. Our results suggest that targeting oxidative folding pathways represents a potential new anti-alphavirus therapeutic strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.