Abstract

Heterologous expression of the transient receptor potential-1 gene product (Trp1) encodes for a Ca2+ entry pathway, though it is unclear whether endogenous Trp1 contributes to a selective store-operated Ca2+ entry current. We examined the role of Trp1 in regulating both store-operated Ca2+ entry and a store-operated Ca2+ entry current, I(SOC), in A549 and endothelial cells. Twenty different 'chimeric' 2'-O-(2-methoxy)ethylphosphothioate antisense oligonucleotides were transfected separately using cationic lipids and screened for their ability to inhibit Trp1 mRNA. Two hypersensitive regions were identified, one at the 5' end of the coding region and the second in the 3' untranslated region beginning six nucleotides downstream of the stop codon. Antisense oligonucleotides stably decreased Trp1 at concentrations ranging from 10 to 300 nM, for up to 72 h. Thapsigargin increased global cytosolic Ca2+ and activated a I(SOC), which was small (-35 pA @ -80 mV), reversed near +40 mV, inhibited by 50 microM La3+, and exhibited anomalous mole fraction dependence. Inhibition of Trp1 reduced the global cytosolic Ca(2+) response to thapsigargin by 25% and similarly reduced I(SOC) by 50%. These data collectively support a role for endogenously expressed Trp1 in regulating a Ca2+-selective current activated upon Ca2+ store depletion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.