Abstract

Actin polarization and actin-driven host nuclear movement towards the fungal penetration site facilitates successful host colonization during compatible pea-Erysiphe pisi interactions. Proper nuclear positioning in plant cells is crucial for developmental processes and response to (a)biotic stimuli. During plant-fungal interactions, the host nucleus moves toward the infection site, a process regulated by the plant cytoskeleton. Notably, rearrangement of the plant cytoskeleton is one of the earliest cellular responses to pathogen invasion and is known to impact penetration efficiency. Yet, the connection between host nuclear movement and fungal ingress is still elusive, particularly in legumes. Here, we investigated the host nuclear dynamics during compatible interactions between Pisum sativum (pea) and the adapted powdery mildew (PM) fungus Erysiphe pisi to gain insights into the functional relevance of PM-induced nuclear movement in legumes. We show that the host nucleus moves towards the fungal appressorium before penetration and becomes associated with the primary haustorium. However, the nucleus migrates away from the primary infection site as the infection progresses toward colony expansion and sporulation. Treatment of pea leaves with the actin-polymerization inhibitor, cytochalasin D, abolished host nuclear movement towards the fungal penetration site and restricted PM growth. In contrast, treatment with oryzalin, a microtubule-polymerization inhibitor, had no effect. In addition to nuclear movement, strong polarization of host actin filaments towards the site of appressorial contact was evident at early infection stages. Our results suggest that actin focusing mediates host nuclear movement to the fungal penetration site and facilitates successful colonization during compatible pea-PM interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call