Abstract
Abstract. Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47 Wm−2 and the inter-model standard deviation is 0.55 Wm−2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm−2, and the standard deviation increases to 1.01 W−2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm−2 (8%) clear-sky and 0.62 Wm−2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.
Highlights
The direct–anSdurinfadciereacltbaedeoro: sroelperfefseecnttsatoionncloofusdoiplrtoyppeerst;ieiscea/nsndow abu7n5 dance vcioavtehr;e smpeocdtirfialcadteipoennodfenthcee;thanergmulaalr sdterupcentudreenocef tohfereatmosphereflaencdtatnhcee surface energy budget (Angstrom, 1962; G(TreDaxßetlos,pr1ie9te–t7a5cCelo;.rl,nHtois2euais0ddn0ses:6reagn;blMoelebtaaapnllrn.ao,ng1edr9tev9ase7lsr.),ti.in2ca0gl1ldo3ib)satarlinbaduetriooobsnso;elrramvdaoitaditoievnlelailnplrgyopguided m–ethRoadsiat(iev.eg.trBaneslfleoru:inspeetctaral.l, r2e0so0l5u;tiYonu; eatccaul.r,ac2y00o6f ;the My8h0re, 200m9)e,tthhoed;umncoelretcauilnatriesscaitnteersintigmates of direct aerosol
Before proceeding with the presentation of the simulated radiative effects, we provide an overview of the key host model components affecting radiative forcing: cloud properties and albedos
Significant regional differences are evident in the model cloud fractions, a known issue for global general circulation models documented in the literature (e.g. Pincus et al, 2008; Probst et al, 2012)
Summary
The direct–anSdurinfadciereacltbaedeoro: sroelperfefseecnttsatoionncloofusdoiplrtoyppeerst;ieiscea/nsndow abu7n5 dance vcioavtehr;e smpeocdtirfialcadteipoennodfenthcee;thanergmulaalr sdterupcentudreenocef tohfereatmosphereflaencdtatnhcee surface energy budget (Angstrom, 1962; G(TreDaxßetlos,pr1ie9te–t7a5cCelo;.rl,nHtois2euais0ddn0ses:6reagn;blMoelebtaaapnllrn.ao,ng1edr9tev9ase7lsr.),ti.in2ca0gl1ldo3ib)satarlinbaduetriooobsnso;elrramvdaoitaditoievnlelailnplrgyopguided m–ethRoadsiat(iev.eg.trBaneslfleoru:inspeetctaral.l, r2e0so0l5u;tiYonu; eatccaul.r,ac2y00o6f ;the My8h0re, 200m9)e,tthhoed;umncoelretcauilnatriesscaitnteersintigmates of direct aerosol. Of solar radiation to space, resulting in. The nsiemgautilvaetedtompu-oltfi-matomdoeslp“hdeirveersraitdyi”atiivneaefroorscoinl gdsire(cctoroal-ing diativeeffofercti)n.gFeosrtipmaarttieasllyisaobfstoernbipnegrcaerivoesodl awsitah ma egaivsuenresionfgle the85uncsecratateinritnyg ianlbtehdeo,rethperreeseenxtiastsioan coriftiacaelrossuorflascoenalgbelodboa, lfor scales (wFhoircshtertheet aclo.,m2b0in0e7d). Haeorowseovl-esru,rtfhaecevasryisatbeimlityreiflnefcotsrcl-ess ing effiscoileanrcriaeds,iait.ieo.nrabdaicaktivtoe sfoparcciengthsannotrhme asluisrefadcebyalpoenret.ur-For bation ssutrrefancgetha,lbseudcohs abselaonwththroispcorgiteicnailcvaaeluroe,stohleosphtoirctawladveep(tShW) t((iASvtOei9e0Dfro)ertt1c(toh9Sipian9Osc-lg5oh.pv,)ftut.a-io2laclzu0tasmel0eul7ytorifa)stad,pl.bcehs,eeeue2pcrga0eogl0cmb(el6Toees)OdustsadoAspsst)ohwrusaaeneiettpldirl“vooeahersrtsooea(lstdenhtf.oegimanr.secoerHAiondnasegesoyrilitolw”siCvlocnaioooyteydmgmearoaptPfianovlhrdesnaao;edsSanieshabtesi-Iornvveee, caitreiivadvKcrOtonoeiiiiaocspdnn(tuaovtinervlisloea.cegvAldfaueoa.filettoallrHiryutncraoiceaivglCni.d,ye,ngtoetwgh2fhmeoe0io(epsre0oicus.n6nigdcnhnt;el.ceogoagTerirnnucaerattodtdxwssaimtsuvipSoanceprvrhutco;yaeineexrantsdii(ybessnSaeoio,flvrWosn.v1e,iream9s)2Iunt9Pt0uutnh5oC0dlcaia)p6iCseet.e-;errsvotadoS:aafssFic-aslnohauoeetltuserirmesosllztsimasetooyireesnbletenpefirattahcseaeleoa.rlla,rol.dmn,se2ssdo2oe0(0wlsp0Ts0rr6iOpe7tae)hro--;,Avse-) efftehcetuivnecleyrtaasinatyhiignhthaelbfoerdcoinsgurcfaalccuel.aTtihouns. Absorbing aerosols abovIen athcisloAuedrolCayoemr Phraevsecritbheedpinotteernctoiamlptaoriisnotnrostduudcyewpeoasiimtive TOtoAbfroidrgceintghses(ee.agp.pCrohaacnhdesettharol.u,g2h0a09s)y.stHemowateicvears,ssecssamtteernitng anodfathbesoerfpfetciotsnoafshsoosctiamteoddewl uitnhcecrltoauindtsieasboonvaeearnosaoelrroasdoialtlivaeyer redfourcceintgheesatvimaialtaebsl.eWraediisaotiloatne aanedrotshoel rheofsotremroeddeul cuenc(neretgaainti-ve ortpieossithtirvoeu)gaherporessoclrriapdtiioantiovfe ifdoernctiincgals a(er.gos. A95eroTsOolArafodricaitnivges (eef.fge.cCtshadnedpeetnadl.,o2n0a09w).idHeorwreavnegr,esocafttaetr-ing co(dGeCs,Mpes)r,fotarkminegdafworayintdhievuidnucearltacionltuyminnaseirnosidoel aplriosceedssseest,uapsor mosphearnidc apbasroarmpteiotenrassasoncdiattheedirwriethpcrelosuednstaatbioonveinanhaoesrtosmool lda-yer at islleulsetcrateteddginloFbiagl. – Ratidoina,tiivteistrgaennsefrearl:lyspdiefcfitcruallt rteososclualteiounn;caecrtcauinrtaiceys aonfdthideen- anrdadraiadtivaetivperofpoerrctiensgwahsiplerolexayvifnogr aulnl coethretarimntoiedselinpaarearmoestoelrsramteitfiheodd;ermroorlsecinulasurcshcaitdteearilinsged intercomparison setups per- diautnivcheafnogrecdin(gdi(fefe.gre.nint bsuutcncoetssnievceesIsPaCriClyainssdeespsemndeenntts aamndonpgreformed for individual atmospheric columns to uncertainty in Generally, purely scattering aerosol enhances the backscattering of solar radiation to space, resulting in negative topof-atmosphere radiative forcings (cooling effect). For partially absorbing aerosol with a given single scattering albedo, viothues mAoedroelCs)o.mItinshteoruclodmbpeanroistoedn sthtuatditehse: iFmoprlsetmereenttaatli.o,n20o0f7; Kinne et al, 2006; Textor et al, 2006; Schulz et al, 2006), convoluting the uncertainty in simulated aerosol fields with the uncertainty in the forcing calculation
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.