Abstract

Various categories of mycorrhizas are recognized primarily by the structural changes that occur between fungi and roots. In all mycorrhiza categories, cytological modifications of root cells accompany the establishment of the functional symbiosis, and among these are alterations in the organization of the cytoskeleton. Using immuno labelling combined with confocal scanning laser microscopy, this study documents changes in microtubules (MTs) in root cells of ectendomycorrhizas and monotropoid mycorrhizas; in addition, ectomycorrhizas were reinvestigated to determine the effect of fungal colonization on host root cells. In Pinus banksiana L. – Laccaria bicolor (Maire) Orton ectomycorrhizas, MTs were present in epidermal and cortical cells adjacent to the Hartig net. The remaining cortical MTs had a different organization when compared with those of cortical cells of control roots. MTs were present in Hartig net hyphae. In ectendomycorrhizas formed when roots of P. banksiana were colonized by the ascomycete, Wilcoxina mikolae var. mikolae Yang & Korf, MTs were present adjacent to intracellular hyphae and host nuclei, but few cortical MTs were present. MTs were present within Hartig net and intracellular hyphae. In field-collected roots of Monotropa uniflora L., MTs were associated with fungal pegs, intracellular extensions of inner mantle hyphae within epidermal cells. The close association between MTs and fungal pegs may be related to the formation of the highly branched host-derived wall that envelops each fungal peg. The development of exchange interfaces in the three systems studied involve changes in the organization of microtubules.Key words: cytoskeleton, microtubules, Hartig net, mycorrhizas, immunolocalization, confocal microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.