Abstract

AbstractNovel host materials and their molecular design methods for phosphorescent materials are crucial for the application of phosphorescent organic light emitting diodes (PhOLEDs), which require balanced carrier injection and sufficient triplet energy levels (ET). Herein, two host materials, namely PPI22PPPBO and PPI33PPPBO, are designed by varying the linkage of benzoxazole (PBO) and phenanthroimidazole (PPI) groups with appropriate ET for green, yellow, and red phosphors. The meta‐link PPI33PPPBO is not only of smaller π‐conjugation, but also of more ordered face‐to‐face stacking for enhanced and more balanced carrier mobility. As a result, the green, yellow, and red PhOLEDs utilizing PPI33PPPBO as host materials show low turn‐on voltages of 2.8 V. The maximum external quantum efficiency (EQEmax) of the corresponding devices reaches 22.8%, 26.7%, and 17.6%, which is superior to that of the traditional host materials CBP and mCP, showing great application potential. More importantly, when the luminance is 1000 cd m−2, their EQE can still be as high as 21.9%, 25.5%, and 16.4%, corresponding to negligible efficiency roll‐offs of only 3.9%, 4.5%, and 6.8%. To the best of authors knowledge, it is the first time that PBO is applied to PhOLED host materials using a twisted connection method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.