Abstract

Intestinal health problems are a major issue in the poultry industry. Quantifiable easy-to-measure biomarkers for intestinal health would be of great value to monitor subclinical intestinal entities that cause performance problems and to evaluate control methods for intestinal health. The aim of the study was to identify host protein biomarkers for intestinal inflammation and intestinal barrier damage. Proteomic analysis was conducted on ileal and colonic content samples of broilers under an experimental gut damage and inflammation model. Effects of the challenge treatment resulted in a worse gut condition based on macroscopic gut appearance (p < 0.0001). Also microscopic changes such as shortening of the villi and increased crypt depth (p < 0.0001) as well as higher infiltration of T-lymphocytes (p < 0.0001) were seen in the duodenal tissue of challenged animals. Several candidate proteins associated with inflammation, serum leakage and/or tissue damage were identified with an increased abundance in intestinal content of challenged animals (p < 0.05). Conversely, brush border enzymes were less abundant in intestinal content of challenged animals (p < 0.05). These candidate biomarkers have potential to be used in the field for detection of gut barrier failure in broilers.

Highlights

  • The production and consumption of broiler meat is rising rapidly worldwide [1, 2]

  • The bacterial cells were collected by centrifugation (10 000 rpm, 10 min, 20 °C) and each pellet was resuspended in anaerobic phosphate buffered saline (PBS, 1 mg/mL cysteine HCl, pH 6) whereby the number of colony-forming units (CFU)/mL was determined by counting the colonies on the plates of a tenfold serial dilution of the suspension before mixing together

  • Intestinal inflammation models that do not induce clinical signs, but affect zootechnical parameters by using triggers that are common under field conditions are the models of choice to identify biomarkers for intestinal health

Read more

Summary

Introduction

The production and consumption of broiler meat is rising rapidly worldwide [1, 2]. Of all terrestrial meat-producing animals, broilers probably have the highest relative daily weight gain and the lowest feed conversion. Disturbances of intestinal tract function are common in broilers, which can hamper their feed conversion due to inefficient digestion and absorption of nutrients [4]. These disturbances are associated with necrotic enteritis, coccidiosis [5, 6] and a range of ill-defined enteric syndromes of unclear etiology, sometimes classified under the common denominator of “dysbiosis”. They constitute the major challenge to the broiler production today

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.