Abstract

Fusarium head blight (FHB) caused by Fusarium pathogens are devastating diseases worldwide. Host-induced gene silencing (HIGS) which involves host expression of double-stranded RNA (dsRNA)-generating constructs directed against genes in the pathogen has been a potential strategy for the ecological sound control of FHB. In this study, we constructed transgenic Brachypodium distachyon lines carrying RNA interference (RNAi) cassettes to target two essential protein kinase genes Fg00677 and Fg08731, and cytochrome P450 lanosterol C14-α-demethylase (CYP51) encoding genes (CYP51A, CYP51B, and CYP51C) of Fusarium graminearum, respectively. Northern blotting confirmed the presence of short interfering RNAs (siRNA) derived from Fg00677, Fg08731, and CYP51 in transgenic B. distachyon plants, and the transcript levels of the corresponding genes were down-regulated in the F. graminearum colonizing B. distachyon spikes. All the corresponding independent, Fg00677-RNAi, Fg08731-RNAi, and CYP51-RNAi transgenic T2 lines exhibited strong resistance to F. graminearum, suggesting that silencing molecules produced by transgenic plants inhibited the corresponding gene function by down-regulating its expression, thereby reducing pathogenicity. Our results indicate that Fg00677 and Fg08731 are effective targets for HIGS and can be applied to construct transgenic HIGS materials to enhance FHB resistance in wheat and other cereal crops.

Highlights

  • Fusarium head blight (FHB), which is caused by the fungal pathogen Fusarium graminearum, is a devastating disease in wheat production around the world (Osborne and Stein, 2007)

  • We show that the transgenic B. distachyon expressing Fg00677-RNA interference (RNAi), Fg08731RNAi, or CYP51-RNAi construct confers resistance to F. graminearum, indicating that Fg00677 and Fg08731 can be used as ideal targets to enhance the resistance to FHB in wheat by Host-induced gene silencing (HIGS) methods, and HIGS applied in the B. distachyon-F. graminearum interaction is a valuable model to rapidly identify effective HIGS targets

  • Sequence analysis indicated that Fg00677 has an open reading frame (ORF) of 1,023 bp, encoding a putative protein composed of 340 amino acids with a molecular weight of 39.72 kDa and an isoeletric point of 7.55

Read more

Summary

Introduction

Fusarium head blight (FHB), which is caused by the fungal pathogen Fusarium graminearum, is a devastating disease in wheat production around the world (Osborne and Stein, 2007). Wheat can be infected by F. graminearum from the seedling to the heading stage, causing seedling blight, head blight, basal stem rot, and stalk rot (Stenglein, 2009). HIGS of Fusarium graminearum Genes for resistance against FHB is the most effective measure to control the disease. Due to the narrow genetic base of wheat, breeding new cultivars against FHB by traditional breeding methods has been difficult (Liu et al, 2009; Loffler et al, 2009). A more effective and stable method for enhancing the resistance against FHB must be developed

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.