Abstract

Click chemistry has reached its maturity as the weapon of choice for the irreversible ligation of molecular fragments, with over 20 years of research resulting in the development or improvement of highly efficient kinetically controlled conjugation reactions. Nevertheless, traditional click reactions can be disadvantageous not only in terms of efficiency (side products, slow kinetics, air/water tolerance, etc.), but also because they completely avoid the possibility to reversibly produce and control bound/unbound states. Recently, non-covalent click chemistry has appeared as a more efficient alternative, in particular by using host-guest self-assembled systems of high thermodynamic stability and kinetic lability. This review discusses the implementation of molecular switches in the development of such non-covalent ligation processes, resulting in what we have termed stimuli-responsive click chemistry, in which the bound/unbound constitutional states of the system can be favored by external stimulation, in particular using host-guest complexes. As we exemplify with handpicked selected examples, these supramolecular systems are well suited for the development of human-controlled molecular conjugation, by coupling thermodynamically regulated processes with appropriate temporally resolved extrinsic control mechanisms, thus mimicking nature and advancing our efforts to develop a more function-oriented chemical synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.