Abstract
Solid-state NMR was utilized to explore the host-guest interaction between adsorbate and adsorbent at atomic level to understand the separation mechanism of styrene (St) and ethylbenzene (EB) in MIL-53(Al). 13C-27Al double-resonance NMR experiments revealed that the host-guest interaction between St and MIL-53 was much stronger than that of EB adsorption. In addition, 13C DIPSHIFT experiments suggested that the adsorbed St was less mobile than EB confined inside the MIL-53 pore. Furthermore, the host-guest interaction model between St, EB and MIL-53 was established on the basis of the spatial proximities information extracted from 2D 1H-1H homo-nuclear correlation NMR experiments. According to the experimental observation from solid-state NMR, it was found that the presence of π-π interaction between St and MIL-53 resulted in the stronger host-guest interaction and less mobility of St. This work provides direct experimental evidence for understanding the separation mechanism of St and EB using MIL-53 as an adsorbent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.