Abstract

A modular labeling strategy was presented for electrochemical immunoassay via supramolecular host-guest interaction between β-cyclodextrin (β-CD) and adamantine (ADA). An ADA-labeled antibody (ADA-Ab) was synthesized via amidation, and the number of ADA moieties loaded on a single antibody was calculated to be ~7. The β-CD-functionalized gold-palladium bimetallic nanoparticles (AuPd-CD) were synthesized in aqueous solution via metal-S chemistry and characterized with transmission electron microscopy and X-ray photoelectron spectra. After the ADA-Ab was bound to the antigen-modified electrode surface with a competitive immunoreaction, AuPd-CD as a signal tag was immobilized onto the immunosensor by a host-guest interaction, leading to a large loading of AuPd nanoparticles. The highly efficient electrocatalysis by AuPd nanoparticles for NaBH4 oxidation produced an ultrasensitive response to chloramphenicol as a model of a small molecule antigen. The immunoassay method showed a wide linear range from 50 pg/mL to 50 μg/mL and a detection limit of 4.6 pg/mL. The specific recognition of antigen by antibody resulted in good selectivity for the proposed method. The host-guest interaction strategy provided a universal labeling approach for the ultrasensitive detection of small molecule targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call