Abstract

The chlorophenoxy herbicide MCPA (4-chloro-2-methylphenoxyacetic acid), widely used for the control of broad-leaf weeds primarily in cereal and grass seed crops, still remains one of the most often used herbicides in Portugal. As the formation of inclusion complexes with cyclodextrins can improve its solubility properties, the interaction between the herbicide MCPA and β-cyclodextrin was investigated. The stability constants describing the extent of formation of the complexes have been determined by phase-solubility studies. Different analytical techniques [ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR)] were employed for a thorough investigation of the structural characteristics of the obtained complexes, which exhibited distinct features and properties from both “guest” and “host” molecules. FTIR and 1H NMR data obtained for the MCPA/β-CD complexes gave information about the interaction between MCPA and the nonpolar cyclodextrin cavity. The dramatic change observed in band frequency and proton displacements of OCH2 group and H6 aromatic proton confirmed the inclusion of MCPA in β-CD. The formation of an inclusion complex between MCPA and β-CD increased the aqueous solubility of this herbicide which could be a particularly advantageous property for some specific applications, namely to improve commercial formulation and for environmental protection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.