Abstract

Interactions between a symmetrical tetramethyl-substituted cucurbit[6]uril (host: TMeQ[6]) and 1,ω-alkylenedipyridine (ω = 2, 4, 6, 8, 10) dicationic guests were investigated using 1H NMR spectroscopy and single crystal X-ray crystallography. In these inclusion complexes, combined cavity and portal binding in TMeQ[6] were observed, and the length of the bridged alkylene was found to play an important role not only in balancing the overall hydrophilic/hydrophobic interaction between the host and the guest, but also in defining the structure of the resulting inclusion complexes. For the guest 1,2-ethylenedipyridine (Edpy), TMeQ[6] includes a positively charged pyridine ring of Edpy to form an unsymmetrical inclusion complex; for the guest 1,4-butylenedipyridine (Bdpy), TMeQ[6] includes a positively charged pyridine ring of Bdpy, but the different competitive interactions in and between the related inclusion complexes could lead to a fast exchange between the hosts and guests. For the guests with longer bridge chains, such as 1,6-hexamethylenedipyridine (Hdpy) or 1,8-octylenedipyridine (Odpy), a stable pseudorotaxane inclusion complex is formed by combining the hydrophobic cavity and the outer portal dipole-ion interactions. However, for 1,10-decatylenedipyridine (Ddpy), the two TMeQ[6] host molecules include the two end pyridine rings of Ddpy and form a dumbbell inclusion complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call