Abstract
Respiratory Syncytial Virus (RSV) is a highly pathogenic member of the Paramyxoviridae that causes severe respiratory tract infections. Reports in the literature have indicated that to infect cells the incoming viruses either fuse their envelope directly with the plasma membrane or exploit clathrin-mediated endocytosis. To study the entry process in human tissue culture cells (HeLa, A549), we used fluorescence microscopy and developed quantitative, FACS-based assays to follow virus binding to cells, endocytosis, intracellular trafficking, membrane fusion, and infection. A variety of perturbants were employed to characterize the cellular processes involved. We found that immediately after binding to cells RSV activated a signaling cascade involving the EGF receptor, Cdc42, PAK1, and downstream effectors. This led to a series of dramatic actin rearrangements; the cells rounded up, plasma membrane blebs were formed, and there was a significant increase in fluid uptake. If these effects were inhibited using compounds targeting Na+/H+ exchangers, myosin II, PAK1, and other factors, no infection was observed. The RSV was rapidly and efficiently internalized by an actin-dependent process that had all hallmarks of macropinocytosis. Rather than fusing with the plasma membrane, the viruses thus entered Rab5-positive, fluid-filled macropinosomes, and fused with the membranes of these on the average 50 min after internalization. Rab5 was required for infection. To find an explanation for the endocytosis requirement, which is unusual among paramyxoviruses, we analyzed the fusion protein, F, and could show that, although already cleaved by a furin family protease once, it underwent a second, critical proteolytic cleavage after internalization. This cleavage by a furin-like protease removed a small peptide from the F1 subunits, and made the virus infectious.
Highlights
Human respiratory syncytial virus (RSV) belongs to the Paramyxoviridae, a family of enveloped viruses with a negativestranded RNA genome
We developed assays for Respiratory Syncytial Virus (RSV) endocytosis, intracellular trafficking, membrane fusion, and infection
The results showed that RSV was rapidly and efficiently internalized, and that acid-independent membrane fusion occurred intracellularly after endocytosis
Summary
Human respiratory syncytial virus (RSV) belongs to the Paramyxoviridae, a family of enveloped viruses with a negativestranded RNA genome. It is a ubiquitous human pathogen that causes severe respiratory tract infections affecting mainly children and the elderly worldwide. A better understanding of virus/host cell interactions is critical for the development of new therapeutic strategies. The nucleocapsid is helical and contains in addition to the RNA the nucleoprotein N, the viral polymerase L, its cofactor-phosphoprotein P, and the transcription processivity factor M2-1. The matrix protein M is believed to form a layer on the inside of the viral envelope [3]. The lipid envelope is derived from the plasma membrane (PM) of the infected host cell, and contains three viral glycoproteins; the major attachment protein G, the fusion protein F, and a small hydrophobic protein SH
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.