Abstract

BackgroundEnzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. The overall biocatalytic conversion usually involves in situ regeneration of the expensive NAD(P)H. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH), presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Because isolated FDH is relatively unstable under a range of process conditions, whole cells often constitute the preferred form of the biocatalyst, combining the advantage of enzyme protection in the cellular environment with ease of enzyme production. However, the most prominent FDH used in biotransformations, the enzyme from the yeast Candida boidinii, is usually expressed in limiting amounts of activity in the prime host for whole cell biocatalysis, Escherichia coli. We therefore performed expression engineering with the aim of enhancing FDH activity in an E. coli ketoreductase catalyst. The benefit resulting from improved NADH regeneration capacity is demonstrated in two transformations of technological relevance: xylose conversion into xylitol, and synthesis of (S)-1-(2-chlorophenyl)ethanol from o-chloroacetophenone.ResultsAs compared to individual expression of C. boidinii FDH in E. coli BL21 (DE3) that gave an intracellular enzyme activity of 400 units/gCDW, co-expression of the FDH with the ketoreductase (Candida tenuis xylose reductase; XR) resulted in a substantial decline in FDH activity. The remaining FDH activity of only 85 U/gCDW was strongly limiting the overall catalytic activity of the whole cell system. Combined effects from increase in FDH gene copy number, supply of rare tRNAs in a Rosetta strain of E. coli, dampened expression of the ketoreductase, and induction at low temperature (18°C) brought up the FDH activity threefold to a level of 250 U/gCDW while reducing the XR activity by just 19% (1140 U/gCDW). The E. coli whole-cell catalyst optimized for intracellular FDH activity showed improved performance in the synthesis of (S)-1-(2-chlorophenyl)ethanol, reflected in a substantial, up to 5-fold enhancement of productivity (0.37 g/gCDW) and yield (95% based on 100 mM ketone used) as compared to the reference catalyst. For xylitol production, the benefit of enhanced FDH expression was observed on productivity only after elimination of the mass transfer resistance caused by the cell membrane.ConclusionsExpression engineering of C. boidinii FDH is an important strategy to optimize E. coli whole-cell reductase catalysts that employ intracellular formate oxidation for regeneration of NADH. Increased FDH-activity was reflected by higher reduction yields of D-xylose and o-chloroacetophenone conversions provided that mass transfer limitations were overcome.

Highlights

  • Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds

  • The design of E. coli whole cell catalysts for ketone reduction must consider the complication that the activity of the ketoreductase should be balanced to the activity of the dehydrogenase applied for coenzyme regeneration

  • We have shown in prior work that in E. coli cells expressing Candida boidinii formate dehydrogenase (CbFDH) next to Candida tenuis xylose reductase (CtXR), the activity of CbFDH was 4.8-fold lower in comparison to the activity produced under CbFDH-only expression conditions [3,4]

Read more

Summary

Introduction

Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH), presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Candida boidinii formate dehydrogenase (CbFDH) has been employed as a workhorse for NADH-regeneration for decades and is used in one of the biggest processes of chiral synthesis, the production of tert-L-leucine [1,2]. Whole cell bioreduction systems allow the production of the required activities for carbonyl reduction and coenzyme recycling by single bioreactor cultivation without further enzyme isolation. Reported E. coli whole cell catalysts based on CbFDH were limited by low FDH activity in E. coli, especially under conditions of high reductase co-expression. CbFDH is rarely used in whole cell systems [3,4,5,6] whereas many papers have been published on the corresponding conversions catalyzed by free enzymes

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.