Abstract

Foxp3(+) regulatory T (Treg) cells include thymic-derived natural Treg and conventional T-derived adaptive Treg cells. Both are proposed to play important roles in downregulating inflammatory immune responses. However, the mechanisms of Treg expansion in inflammatory environments remain unclear. In this study, we report that, in an autoimmune-like graft-versus-host disease model of DBA/2 (H-2(d)) donor to BALB/c (H-2(d)) recipients, donor Treg cells in the recipients predominantly originated from expansion of natural Treg cells and few originated from adaptive Treg cells. In vivo neutralization of IFN-γ resulted in a marked reduction of donor natural Treg expansion and exacerbation of graft-versus-host disease, which was associated with downregulation of host APC expression of B7H1. Furthermore, host APC expression of B7H1 was shown to augment donor Treg survival and expansion. Finally, donor Treg interactions with host APCs via B7.1/B7H1 but not PD-1/B7H1 were demonstrated to be critical in augmenting donor Treg survival and expansion. These studies have revealed a new immune regulation loop consisting of T cell-derived IFN-γ, B7H1 expression by APCs, and B7.1 expression by Treg cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.