Abstract

Dengue virus (DENV) is a mosquito-borne flavivirus that causes frequent outbreaks in tropical countries. Due to the four different serotypes and ever-mutating RNA genome, it is challenging to develop efficient therapeutics. Early diagnosis is crucial to prevent the severe form of dengue, leading to mortality. In the past decade, rapid advancement in the high throughput sequencing technologies has shed light on the crucial regulating role of non-coding RNAs (ncRNAs), also known as the "dark matter" of the genome, in various pathological processes. In addition to the human host ncRNAs like microRNAs and circular RNAs, DENV also produces ncRNAs such as subgenomic flaviviral RNAs that can modulate the virus life cycle and regulate disease outcomes. This review outlines the advances in understanding the interplay between the human host and DENV ncRNAs, their regulation of the innate immune system of the host, and the prospects of the ncRNAs in clinical applications such as dengue diagnosis and promising therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.