Abstract

A wide range of pharmaceutical residues is known to occur in the environment. While they are released into surface waters mainly through centralized wastewater treatment plants (WWTPs), their primary emission sources are located upstream in the sewer network. Information on emissions from different types of primary emission sources is scarce. However, such information could help direct emission reduction measures more efficiently. In this study, we analysed the concentrations of selected active pharmaceutical ingredients (APIs) in wastewater samples taken from altogether ten sites, covering primary emission sources (hospitals and households), and conventional WWTPs. The concentrations in WWTP effluents were used to identify APIs causing risk in recipient waterbodies. Furthermore, the API loads from households and hospitals were compared to those reaching the WWTP in mixed influents. Our results confirm previously published observations of several pharmaceuticals exceeding their predicted no-effect concentrations in effluent wastewaters. Moreover, the concentrations of most of the analysed APIs are comparatively high in hospital wastewaters, resulting in elevated risk quotients. While the total API loads are relatively low from primary emission sources, owing to the low wastewater volume generated at those sites, per capita emissions were shown to be several times higher at hospital sites than at household sites for APIs such as metronidazole, trimethoprim, and ofloxacin. These findings indicate, that directing emission reduction measures to hospitals could be an effective way to decrease the loads of several risk-posing APIs into the environment, especially where hospital contribution to overall wastewater flow to WWTPs is high.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call