Abstract

BackgroundInfluenza and respiratory syncytial virus (RSV) contribute significantly to the burden of acute lower respiratory infection (ALRI) inpatient care, but heterogeneous coding practices and availability of inpatient data make it difficult to estimate global hospital utilization for either disease based on coded diagnoses alone.MethodsThis study estimates rates of influenza and RSV hospitalization by calculating the proportion of ALRI due to influenza and RSV and applying this proportion to inpatient admissions with ALRI coded as primary diagnosis. Proportions of ALRI attributed to influenza and RSV were extracted from a meta-analysis of 360 total sources describing inpatient hospital admissions which were input to a Bayesian mixed effects model over age with random effects over location. Results of this model were applied to inpatient admission datasets for 44 countries to produce rates of hospital utilization for influenza and RSV respectively, and rates were compared to raw coded admissions for each disease.ResultsFor most age groups, these methods estimated a higher national admission rate than the rate of directly coded influenza or RSV admissions in the same inpatient sources. In many inpatient sources, International Classification of Disease (ICD) coding detail was insufficient to estimate RSV burden directly. The influenza inpatient burden estimates in older adults appear to be substantially underestimated using this method on primary diagnoses alone. Application of the mixed effects model reduced heterogeneity between countries in influenza and RSV which was biased by coding practices and between-country variation.ConclusionsThis new method presents the opportunity of estimating hospital utilization rates for influenza and RSV using a wide range of clinical databases. Estimates generally seem promising for influenza and RSV associated hospitalization, but influenza estimates from primary diagnosis seem highly underestimated among older adults. Considerable heterogeneity remains between countries in ALRI coding (i.e., primary vs non-primary cause), and in the age profile of proportion positive for influenza and RSV across studies. While this analysis is interesting because of its wide data utilization and applicability in locations without laboratory-confirmed admission data, understanding the sources of variability and data quality will be essential in future applications of these methods.

Highlights

  • Influenza and respiratory syncytial virus (RSV) contribute significantly to the burden of acute lower respiratory infection (ALRI) inpatient care, but heterogeneous coding practices and availability of inpatient data make it difficult to estimate global hospital utilization for either disease based on coded diagnoses alone

  • By comparing the results of the Burden of Influenza and RSV Disease (BIRD) project method to those produced by raw extraction of International Classification of Disease (ICD)-coded RSV and influenza admission rates, we can estimate the potential under-attribution of ALRI to these specific causes

  • These datasets included approximately 43 million admissions and represent all ICDcoded inpatient admission data used in the Global Burden of Disease Study, an international collaborative study led by the Institute for Health Metrics and Evaluation (IHME) at the University of Washington and supported by over 4800 researchers in more than 140

Read more

Summary

Introduction

Influenza and respiratory syncytial virus (RSV) contribute significantly to the burden of acute lower respiratory infection (ALRI) inpatient care, but heterogeneous coding practices and availability of inpatient data make it difficult to estimate global hospital utilization for either disease based on coded diagnoses alone. The Burden of Influenza and RSV Disease (BIRD) project has developed an alternative method that may be useful for producing estimates of county-specific influenza and RSV burdens using administrative hospitalization data. This method generates rates of influenza and RSV-related acute lower respiratory illness (ALRI) hospitalizations across 44 countries by modeling the proportion of ALRI hospitalizations attributable to RSV and influenza from literature estimates of laboratory-confirmed influenza and RSV among ALRI hospitalizations. By comparing the results of the BIRD project method to those produced by raw extraction of ICD-coded RSV and influenza admission rates, we can estimate the potential under-attribution of ALRI to these specific causes

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call