Abstract

The forced van der Pol equation was introduced in the 1920s as a model of an electrical circuit. Cartwright and Littlewood established the existence of invariant sets with complex topology in this system. This paper contains, for the first time, a full description of the nonwandering set for an open set of parameters near the singular limit of the forced van der Pol equation. In particular, we prove the existence of a hyperbolic chaotic invariant set. We also prove that the system is structurally stable. The analysis is conducted from the perspective of geometric singular perturbation theory. Verifying the hypothesis is done by implementing self-validating numerical algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.