Abstract

Relational database management systems (RDBMS) are operationally similar to a dynamic language processor. They take SQL queries as input, dynamically generate an optimized execution plan, and then execute it. In recent decades, the emergence of in-memory databases with columnar storage, which use array-like storage structures, has shifted the focus on optimizations from the traditional I/O bottleneck to CPU and memory. However, database research so far has primarily focused on CPU cache optimizations. The similarity in the computational characteristics of such database workloads and array programming language optimizations are largely unexplored. We believe that these database implementations can benefit from merging database optimizations with dynamic array-based programming language approaches. Therefore, in this paper, we propose a novel approach to optimize database query execution using a new array-based intermediate representation, HorseIR, that resides between database queries and compiled code. Furthermore, we provide a translator to generate HorseIR from database execution plans and a compiler that optimizes HorseIR and generates efficient code. We compare HorseIR with the MonetDB RDBMS, by testing standard SQL queries, and show how our approach and compiler optimizations improve the runtime of complex queries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.