Abstract

ABSTRACT The traditional machining process is not suitable for machine brittle material like glass, ceramics and hard alloys. To machine such kinds of materials, the non-traditional machining process is used. In today’s modern industry, ultrasonic machining is used for machine hard and brittle materials. Operation conditions of USM very high frequency (18 to 46 kHz) and tool vibration gives around 6-μm amplitude. Cutting tools have an amplitude of around 5–90 μm for achieving good machining quality. In the USM process, horn transfers the vibration force from the transducer to the cutting tool end. Novel horn design gives the magnification factor (MF) for vibration amplitude. In this paper, the horn is invented for the USM process with the help of ANSYS and finite element analysis (FEA) to manage the necessary performance for the industry. First of all, the horn profile is designed by using the differential equations for getting a 3D model. The shape of mode and frequencies is found out by modal analysis performance. Similarly, design feasibility is verified by balanced retaliation performance analysis to found out the magnification factor with the help of a novel horn. Finally, the design of the novel horn is compared with the suggestive horn.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call