Abstract

Hormone-sensitive lipase (hsl) plays a pivotal role in regulation of lipolysis in mammals, but information is very scarce about its gene structure and function in fish. In this study, two distinct hsl cDNAs, designated hsl1 and hsl2, were firstly isolated and characterized from yellow catfish Pelteobagrus fulvidraco. The validated cDNAs encoding for hsl1 and hsl2 were 2739 and 2629bp in length, encoding peptides of 679 and 813 amino acid residues, respectively, and shared 57.7% amino acid identity. The phylogenetic analysis revealed that hsl1 and hsl2 derived from paralogous genes that might have arisen during a teleost-specific genome duplication event. Both hsl mRNAs were expressed in a wide range of tissues, but the abundance of each hsl mRNA showed the tissue- and developmental stage-dependent expression patterns. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin (rb-hLEP) stimulated the mRNA expression of hsl2, but not hsl1, in the liver and hepatocytes of P. fulvidraco, respectively, suggesting that two hsl isoforms might serve different roles in lipid metabolism. To our knowledge, for the first time, the present study provides evidence that two hsl mRNAs are differentially expressed with and among tissues during different developmental stages and also differentially regulated by leptin both in vivo and in vitro, which serves to increase our understanding on hsl physiological function in fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.