Abstract

The actions of vasopressin and glucagon, administered alone or together, were assessed on bile flow in perfused livers from rats made cholestatic by the injection of ethynylestradiol and from those allowed to recover from such treatment. Concomitant measurements were made of biliary calcium output as well as changes in the perfusate Ca2+ concentration, glucose output, and oxygen uptake. Experiments were also conducted where cholestasis was induced in vitro in the perfused liver by the infusion of phalloidin. In each case cholestasis was demonstrated to have occurred by a reduction in bile flow by approximately 50%. The data show that the transient increase in bile flow and bile calcium seen in control rat liver soon after the administration of vasopressin, particularly when coadministered with glucagon, is largely absent in cholestasis induced by ethynylestradiol and attenuated in cholestasis induced by phalloidin. At the same time the pattern of perfusate Ca2+ fluxes in ethynylestradiol-induced cholestasis shifts to one reflecting net efflux of the ion from the liver. The responses to glucagon administration alone contrast with those of vasopressin in that in the perfused liver of ethynylestradiol-treated rats, glucagon induces a pronounced and sustained increase in bile flow. In cholestasis induced by both ethynylestradiol and phalloidin, glucagon fails to induce an initial transient decrease in bile flow. The effects of glucagon, including enhancement of vasopressin-stimulated bile flow in control and in ethynylestradiol-treated rats, can be mimicked by dibutyryl cyclic adenosine monophosphate (cAMP). Changes in glucose output and oxygen uptake induced by both hormones are only slightly attenuated. The data show that the modulation of bile flow that occurs rapidly after the administration of vasopressin and glucagon to control perfused rat liver is altered in conditions of cholestasis induced by either ethynylestradiol or phalloidin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.