Abstract

A hormone-responsive 3D human tissue-like culture system was developed in which human primary mammary epithelial cells (MECs) were co-cultured with two types of predominant mammary stromal cells on silk protein scaffolds. Silk porous scaffolds with incorporated extracellular matrix provided a compatible environment for epithelial structure morphogenesis and differentiation. The presence of stromal cells promoted MEC proliferation, induced both alveolar and ductal morphogenesis and enhanced casein expression. In contrast, only alveolar structures were observed in monocultures. The alveolar structures generated from the heterotypic cultures in vitro exhibited proper polarity similar to human breast tissue in vivo. Consistent with their phenotypic appearance, more functional differentiation of epithelial cells was also observed in the heterotypic cultures, where casein-α and -β mRNA expression were increased significantly. Additionally, this 3D multicellular culture model displayed an estrogen-responsive physiologically relevant response, evidenced by enhanced cell proliferation, aberrant morphology, changes in gene expression profile and few polarized lumen structures after estrogen treatment. This culture system offers an excellent opportunity to explore the role of cell–cell and cell–substrate interactions during mammary gland development, the consequences of hormone receptor activation on MEC behavior and morphogenesis, as well as their alteration during neoplastic transformation in human breast tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call