Abstract
BackgroundHormones impact breast tissue proliferation. Studies investigating the associations of circulating hormone levels with mammographic breast density have reported conflicting results. Due to the limited number of studies, we investigated the associations of hormone gene expression as well as their downstream mediators within the plasma with mammographic breast density in postmenopausal women.MethodsWe recruited postmenopausal women at their annual screening mammogram at Washington University School of Medicine, St. Louis. We used the NanoString nCounter platform to quantify gene expression of hormones (prolactin, progesterone receptor (PGR), estrogen receptor 1 (ESR1), signal transducer and activator of transcription (STAT1 and STAT5), and receptor activator of nuclear factor-kB (RANK) pathway markers (RANK, RANKL, osteoprotegerin, TNFRSF18, and TNFRSF13B) in plasma. We used Volpara to measure volumetric percent density, dense volume, and non-dense volume. Linear regression models, adjusted for confounders, were used to evaluate associations between gene expression (linear fold change) and mammographic breast density.ResultsOne unit increase in ESR1, RANK, and TNFRSF18 gene expression was associated with 8% (95% CI 0–15%, p value = 0.05), 10% (95% CI 0–20%, p value = 0.04) and % (95% CI 0–9%, p value = 0.04) higher volumetric percent density, respectively. There were no associations between gene expression of other markers and volumetric percent density. One unit increase in osteoprotegerin and PGR gene expression was associated with 12% (95% CI 4–19%, p value = 0.003) and 7% (95% CI 0–13%, p value = 0.04) lower non-dense volume, respectively.ConclusionThese findings provide new insight on the associations of plasma hormonal and RANK pathway gene expression with mammographic breast density in postmenopausal women and require confirmation in other studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.