Abstract

Herbivorous turtle, Chelonia mydas, inhabiting the south China Sea and breeding in Peninsular Malaysia, and Natator depressus, a carnivorous turtle inhabiting the Great Barrier Reef and breeding at Curtis Island in Queensland, Australia, differ both in diet and life history. Analysis of plasma metabolites levels and six sex steroid hormones during the peak of their nesting season in both species showed hormonal and metabolite variations. When compared with results from other studies progesterone levels were the highest whereas dihydrotestosterone was the plasma steroid hormone present at the lowest concentration in both C. mydas and N. depressus plasma. Interestingly, oestrone was observed at relatively high concentrations in comparison to oestradiol levels recorded in previous studies suggesting that it plays a significant role in nesting turtles. Also, hormonal correlations between the studied species indicate unique physiological interactions during nesting. Pearson correlation analysis showed that in N. depressus the time of oviposition was associated with elevations in both plasma corticosterone and oestrone levels. Therefore, we conclude that corticosterone and oestrone may influence nesting behaviour and physiology in N. depressus. To summarise, these two nesting turtle species can be distinguished based on the hormonal profile of oestrone, progesterone, and testosterone using discriminant analysis.

Highlights

  • Hormones have various functions across animal taxa

  • Oestrone was observed at relatively high concentrations in comparison to oestradiol levels recorded in previous studies suggesting that it plays a significant role in nesting turtles

  • This study investigated hormonal and metabolite patterns collected at the peak of the respective nesting seasons for C. mydas (Ibrahim, personal observations) and N. depressus [19, 20]

Read more

Summary

Introduction

Hormones have various functions across animal taxa. In birds, for example, testosterone is linked to mating success, while corticosterone has been shown to support energetically demanding processes [1]. In Chelonia mydas corticosterone increases glycerol release from adipose tissue suggesting that this hormone induces the mobilization of triglycerides accumulated in the adipocytes [14]. It causes the release of free fatty acid into the blood during nesting [7, 8]. Because sea turtles are largely aphagic during reproductive and nesting activities [15, 16], corticosterone induces free fatty acids release from adipose tissue to compensate for the lack of food and the energy demands during courtship and nesting activities in sea turtles, indicating that corticosterone is an essential steroid hormone for energetic homeostasis of sea turtles during reproduction [13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call