Abstract

Sex steroids are known to play a crucial role in reproductive neuroendocrine functions in adulthood. A number of neurons in the neuroendocrine brain contain sex steroid receptors, and are thought to be a key element of functional neural circuits that are regulated by sex steroids. Motoneurons in the spinal nucleus of the bulbocavernosus in adult male rodents are one of the androgen-sensitive neural substrates. In the spinal nucleus of the bulbocavernosus, castration of adult male rats results in a significant decrease in the somatic size and dendritic length of the motoneurons, and in the number and size of chemical and electrical (gap junction) synapses onto these motoneurons. Androgen treatment of castrates reverses these changes. Furthermore, androgen has been reported to be involved in regulation of androgen receptor expression and gene expression of structural proteins such as β-actin, β-tubulin and gap junction channels in these motoneurons. The findings suggest that androgen induces morphological and molecular changes in the motoneurons that reflect their neural functions, and may provide evidence for the mechanisms of hormonally induced neuronal plasticity in the motoneurons in adulthood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.