Abstract

Early sex hormone exposure contributes to gender-dimorphic behavioral development in mammals, including humans. Environmental toxicants concentrated in contaminated sport fish can interfere with the actions of sex steroids. This study developed an outcome variable by combining gender-dimorphic behaviors that differentiates boys and girls. Offspring of participants in the New York State Angler Cohort Study (NYSACS) were targeted in a parent-report postal survey. Instruments were selected based on findings of gender differences in the general population. A linear discriminant function model incorporating three gender behavior scales correctly classified the sex of 97.7% of children (252 boys and 234 girls) from a random NYSACS sample. The discriminant function was cross-validated by correctly classifying the sex of 98.4% of children (457 boys and 425 girls) from the remaining NYSACS cases and 97.6% of children (154 boys and 142 girls) from an independent school sample. Within-sex stepwise multiple regression analyses revealed that masculine behavior increased among boys with age and with the number of years of maternal sport fish consumption. In girls, older age and previous live-born siblings were associated with more masculine behavior, whereas feminine behavior increased with the duration of breast feeding. These associations were replicated in an independent sample. A linear discriminant function effectively transformed the binary classification of sex (male-female) to a bipolar continuum of gender (masculinity-femininity). Findings from this study are consistent with the hypothesis that environmental contaminants contribute to shifts in gender-role behavior. Future investigations will need to account for competing explanations of this effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call