Abstract

The sodium-potassium-activated adenosinetriphosphatase (Na(+)-K(+)-ATPase; Na(+)-K+ pump) is a ubiquitous plasma membrane enzyme that catalyzes the movement of K+ into cells in exchange for Na+. In addition, it provides the driving force for the transport of other solutes, notably amino acids, sugar, and phosphate. The regulation of Na(+)-K(+)-ATPase in various tissues is under the control of a number of circulating hormones that impart both short- and long-term control over its activity. The molecular mechanisms by which hormones alter Na(+)-K(+)-ATPase activity have only begun to be studied. In this review, we assess the acute and long-term actions of a number of hormones (aldosterone, thyroid hormone, catecholamines, insulin, carbachol) on the Na(+)-K+ pump. The long-term regulation exerted by thyroid hormone and aldosterone is mediated by changes in gene expression. The short-term regulation exerted by catecholamines is mediated by reversible phosphorylation of the pump catalytic subunit. Recent evidence supports regulation of the pump by phosphorylation in vitro and in intact cells. Finally, in some tissues the rapid action of insulin, aldosterone, and carbachol involves changes in the subcellular distribution of pump units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.