Abstract

The precise mechanism(s) of action of PTH, insulin or glucagon in the regulation of renal glutamine and ammonia metabolism is unknown. Our aim was to delineate the effects and the site(s) of action of these hormones on renal glutamine metabolism. Experiments were carried out using OK cells as a model system. Cell cultures were incubated for three hours in a bicarbonate buffer of pH 7.4 supplemented with either 1 mM [2-15N] or [5-15N] glutamine and 10(-7) M PTH, insulin or glucagon. Comparative studies were performed at pH 6.8, 7.4 or 7.6 without hormone. PTH and acute acidosis significantly stimulated glutamine metabolism via both the phosphate-dependent glutaminase (PDG) and glutamate dehydrogenase (GLDH) pathways. The opposite was observed at pH 7.6. Insulin augmented flux via PDG with little effect on the GLDH pathway. Glucagon had insignificant effects on either PDG or GLDH pathways. Intracellular [15N] glutamate formed from [2-15N] glutamine was removed partially by transamination to alanine, aspartate and serine and partially by translocation to an extracellular compartment. Acidosis, PTH and insulin enhanced the formation of [15N] alanine with little effect on [15N] aspartate. PTH, insulin and glucagon significantly stimulated the production of [15N]serine, whereas acidosis had little effect. The translocation of intracellular glutamate was significantly increased by acidosis, PTH and insulin and decreased by acute alkalosis. The data indicate that: (a) PTH mimicks the effect of acute acidosis on renal glutamine metabolism, that is, augmented glutamine metabolism through both PDG and GLDH pathways and stimulated the output of intracellular glutamate. This effect might be mediated via decreased activity of the Na(+)-H+ exchanger associated with cellular acidification and/or through a second messenger; (b) insulin, but not glucagon, increased glutamine uptake and metabolism, and simultaneously enhanced output of intracellular glutamate sufficiently to stimulate the PDG pathway; and (c) overall, glucagon had little effect on glutamine metabolism by OK cells compared with either PTH or insulin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.