Abstract

Each abdominal ganglion of the central nervous system of the tobacco hawkmoth, Manduca sexta contains four individually identified lateral neurosecretory cells (LNCs) that undergo a postembryonic transmitter switch in vivo. In the embryonic and caterpillar stages, the primary LNC transmitter is cardioacceleratory peptide 2 (CAP2), a myoregulatory peptide. During metamorphosis, these cells stop expressing CAP2 and instead produce bursicon, a classic insect peptide hormone responsible for cuticular tanning. We have previously reported that this transmitter plasticity is under the control of the insect steroid hormone 20-hydroxyecdysone (20-HE), which surges twice during the last larval instar. In that report we showed that the CAP2 decline is indirectly regulated by the first 20-HE rise, the commitment pulse (CP). Here we provide evidence that the rise in bursicon levels in the LNCs is directly triggered by the second 20-HE surge, the prepupal peak (PP). We performed several experimental manipulations that exposed LNCs to the PP without the CP; cells treated in this manner exhibited a significant rise in bursicon content. In contrast, bursicon levels remained unchanged in those LNCs exposed only to the CP. Exposure to the PP triggered a precocious increase in bursicon expression in LNCs from the penultimate larval stage. Increased bursicon levels in the LNCs were also induced by direct infusion of 20-HE. Taken together, the results of these experiments suggest that the rise in bursicon in the LNCs during metamorphosis is due to the direct action of the PP on the LNCs. Thus, the two 20-HE surges combine to regulate the CAP2-to-bursicon switch in the LNCs, the first acting indirectly to cause a decline in CAP2 levels and the second triggering a rise in bursicon expression, possibly by a direct action on the LNCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.