Abstract

Araschnia levana L. occurs in two seasonal morphs. Larvae reared under short-day conditions become diapause pupae and emerge as red spring-morph butterflies. Long-day larvae become non-diapause pupae, which emerge as black and white summer morphs. Pupae reared under these different conditions were joined in parabiosis. Both underwent adult development without diapause and the long-day animals developed into the summer morph as normal. The morph of short-day animals depended on the time of parabiosis. When they were joined to fresh long-day pupae 1 day after their own pupation, summer morphs resulted. When parabiosis began 4 days after pupation or later, spring morphs resulted. Extirpation of the brain-corpora cardiaca-allata complex from long-day pupae affected neither non-diapause development nor the summer morph. Adult development could be prevented by removal of head and prothorax. When adult development was initiated in the remaining bodies by 20-hydroxyecdysone 14 days after pupation, the spring morph resulted.—Injection of 20-dydroxyecdysone into 3-day-old short-day pupae initiated adult development and led to the summer morph. Injections into 10-day-old short-day pupae led to the spring morph. The same was true in diapause pupae deprived of their brain-corpora cardiaca-allata complex. These results indicate that seasonal diphenism in A. levana is controlled only by the timing of ecdysteroid release, which initiates adult development. There is no direct influence of the brain on wing coloration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call