Abstract

The akr1b7 gene encodes an aldose reductase-like protein that is responsible for detoxifying isocaproaldehyde generated by the conversion of cholesterol to pregnenolone. The regulation of gene expression by human chorionic gonadotropin (hCG) was first investigated in the MA-10 Leydig tumor cell line. The akr1b7 gene was constitutively expressed and accumulation of its mRNA was increased in a dose- and time-dependent manner by treatment with hCG. akr1b7 mRNA accumulation was sharply increased in the presence of 0.25 nM hCG and it reached a fivefold increase within 2 h. AKR1B7 protein accumulation was delayed compared with that of the corresponding mRNA. In agreement, hCG significantly increased the levels of mRNA and protein of akr1b7 in primary cultures of adult mouse Leydig cells, thus suggesting that LH potentially regulates akr1b7 gene expression in vivo. Expression of akr1b7 was developmentally regulated in the testis. Unexpectedly, levels of akr1b7 mRNA increased from embryonic day 15 to the day of birth and declined until adulthood while AKR1B7 protein levels followed an inverse pattern, suggesting an important role for translational mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call