Abstract

Methylmercury (MeHg+) is an extremely toxic organomercury cation that can induce severe neurological damage. Once it enters the body, methylmercury binds to amino acids or proteins containing free sulfhydryl groups. In particular, methylmercury is known to bind with human serum albumin (HSA) in human plasma; however, the effects of methylmercury-HSA conjugate (MeHg-HSA) on the central nervous system (CNS) are not fully understood. In the present study, we used the microglial cell line N9 as the target cells to evaluate the effect of MeHg-HSA on physiological function of the CNS preliminarily. The various factors in the cell culture were monitored by MTT assay, total lactate dehydrogenase assay, ELISA, qPCR, Western blot and flow cytometry techniques. The results showed that low-dose treatment with MeHg-HSA activated N9 cells, promoting cell proliferation and total cell number, enhancing NO and intracellular Ca2+ levels, and suppressing the release of TNFα and IL1β without cytotoxic effects; while high-dose MeHg-HSA exhibited cytotoxic effects on N9 cells, including promoting cell death and increasing the secretion of TNFα and IL1β. These results indicate that MeHg-HSA causes hormesis in microglia N9 cells. Furthermore, ERK/MAPKs and STAT3 signaling pathways related to the hormesis of MeHg-HSA on N9 cells. In addition, low dose of MeHg-HSA might be viewed as something very close to a lowest observed adverse effect level (LOAEL) for N9 cells. These findings will be useful for investigating the hormesis mechanism of MeHg+ and exploring the specific functions of MeHg-sulfhydryl conjugates on the central nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.