Abstract

While photoautotrophic organisms utilize inorganic nitrogen as the nitrogen source, heterotrophic organisms utilize organic nitrogen and thus do not generally have an inorganic nitrogen assimilation pathway. Here, we focused on the nitrogen metabolism of Rapaza viridis, a unicellular eukaryote exhibiting kleptoplasty. Although belonging to the lineage of essentially heterotrophic flagellates, R. viridis exploits the photosynthetic products of the kleptoplasts and was therefore suspected to potentially utilize inorganic nitrogen. From the transcriptome data of R. viridis, we identified gene RvNaRL, which had sequence similarity to genes encoding nitrate reductases in plants. Phylogenetic analysis revealed that RvNaRL was acquired by a horizontal gene transfer event. To verify the function of the protein product RvNaRL, we established RNAi-mediated knock-down and CRISPR-Cas9-mediated knock-out experiments for the first time in R. viridis and applied them to this gene. The RvNaRL knock-down and knock-out cells exhibited significant growth only when ammonium was supplied. However, in contrast to the wild-type cells, no substantial growth was observed when nitrate was supplied. Such arrested growth in the absence of ammonium was attributed to impaired amino acid synthesis due to the deficiency of nitrogen supply from the nitrate assimilation pathway; this in turn resulted in the accumulation of excess photosynthetic products in the form of cytosolic polysaccharide grains, as observed. These results indicate that RvNaRL is certainly involved in nitrate assimilation by R. viridis. Thus, we inferred that R. viridis achieved its advanced kleptoplasty for photoautotrophy, owing to the acquisition of nitrate assimilation via horizontal gene transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.