Abstract

Parasite transmission dynamics are fundamental to explaining the evolutionary epidemiology of disease because transmission and virulence are tightly linked. Horizontal transmission of microsporidian parasites, e.g. Nosema bombi, may be influenced by numerous factors, including inoculation dose, host susceptibility and host population heterogeneity. Despite previous studies of N. bombi and its bumble bee hosts, neither the epidemiology nor impact of the parasite are as yet understood. Here we investigate the influence N. bombi spore dosage (1000 to 500,000 spores), spore source (Bombus terrestris and B. lucorum isolates) and host age (2- and 10-day-old bees) have on disease establishment and the presence of patent infections in adult bumble bees. Two-day-old bees were twice as susceptible as their 10-day-old sisters, and a 5-fold increase in dosage from 100,000 to 500,000 spores resulted in a 20-fold increase in the prevalence of patent infections. While intraspecific inoculations were 3 times more likely to result in non-patent infections there was no such effect on the development of patent infections. These results suggest that host-age and dose are likely to play a role in N. bombi's evolutionary epidemiology. The relatively low levels of horizontal transmission success are suggestive of low virulence in this system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call